On exact analytical solutions for the few-particle Schrodinger equation. IV. The asymptotic form and normalisability of the wavefunction

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1983 J. Phys. A: Math. Gen. 164255
(http://iopscience.iop.org/0305-4470/16/18/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:47

Please note that terms and conditions apply.

On exact analytical solutions for the few-particle Schrödinger equation: IV. The asymptotic form and normalisability of the wavefunction

C L Davis and E N Maslen
Department of Physics, University of Western Australia, Nedlands, Western Australia 6009

Received 7 December 1982, in final form 10 June 1983

Abstract

Formal series solutions for the Schrödinger equations of few-particle systems contain infinitely many parameters associated with the normalisability, i.e. square-integrability of the wavefunction. The energy is one of these parameters. A method for determining the parameters by examining the asymptotic behaviour of the series has been developed. No integration, matrix inversions or trial and error procedures are involved.

As described here the method is directly applicable to the ${ }^{1} \mathrm{~S}$ states of two-electron atoms. If the wavefunction is expressed as a multipole expansion in spherical polar coordinates, the radial functions have asymptotic properties which give rise to relations between the parameters. Values assigned to the parameters not specified by these relations (one per multipole) ensure that the wavefunction is normalisable.

1. Introduction

Formal solutions for the Schrödinger equations of small atomic systems have been obtained in the form of infinite series expansions involving numerical coefficients (Knirk 1974a, b, c, d, Davis and Maslen 1982). Recurrence relations derived from the Schrödinger equation allow most of the coefficients to be determined recursively, subject to starting conditions which ensure correct behaviour of the solutions at the nucleus. Infinitely many coefficients are not determined by the recursion process, and may have arbitrary values in the formal solutions. These coefficients and the energy E must be chosen so that, at large distances from the nucleus, the solutions decrease sufficiently rapidly to have finite norms. Normalisable solutions exist only for special values of E, which are the eigenvalues.

As yet none of the methods proposed for determining the parameters associated with normalisability has realised the potential for computational efficiency and exact treatment offered by the formal solutions. Methods suggested by Knirk (1974c) and by Demiralp and Suhubi (1977) require the solution of determinantal equations with roots which are approximations to some of the energy eigenvalues. One would hope that the limitations of this procedure, which is a time-consuming part of the usual orbital-based wavefunction calculations, could be avoided in the use of formal solutions. A method described by Davis and Maslen (1982, hereafter referred to as II) involves least-squares analyses of the coefficients. This is also cumbersome, requiring matrix inversions.

The determination of the parameters associated with normalisability ideally requires a knowledge of the asymptotic form of each solution at large distances. Extraction of
this asymptotic form from the series would enable the energy and the arbitrary coefficients to be evaluated, by requiring the remaining series to truncate.

The methods mentioned above are not suited to the exact determination of the asymptotic forms of the series. A more suitable method, described below, results from a study of the problem in spherical polar coordinates. The study reveals that some of the components of the radial wavefunctions are asymptotically separable. An analysis of asymptotic behaviour, when combined with an algebraic treatment of the type described in the preceding paper (Davis and Maslen 1983, hereafter referred to as III), enhances the prospects for obtaining exact solutions of the Schrödinger equation.

In addition to its application to exact solutions, the asymptotic separability property leads to an efficient numerical method for estimating the energy and the arbitrary coefficients. The procedure does not require matrix inversions, solution of determinantal equations or the calculation of integrals. Trial and error estimates of the energy, of the type applied to approximate series solutions by Rosenthal and Wilson (1967, 1970) and McColm (1973), are not required. Although the calculations reported here are not of high accuracy, their purpose being merely to indicate the properties of the series solutions and to guide future analytical and computational work, high accuracy should be readily obtainable.

2. Formal solutions in spherical polar coordinates

Our procedure is illustrated here by application to the ${ }^{1} S$ states of helium-like atoms for which the Schrödinger equation, in coordinates defined in III, becomes
$\left[-\frac{1}{2} \sum_{\tau=1}^{2}\left(r_{\tau}^{-2} \frac{\partial}{\partial r_{\tau}} r_{\tau}^{2} \frac{\partial}{\partial r_{\tau}}+r_{\tau}^{-2} \frac{\partial}{\partial \Omega}\left(1-\Omega^{2}\right) \frac{\partial}{\partial \Omega}\right)-\frac{1}{r_{1}}-\frac{1}{r_{2}}+\frac{1}{Z r_{12}}-E\right] \Psi=0$.
Z is the nuclear charge in units of the proton charge and Ω is the cosine of the angle Θ between the position vectors of the electrons relative to the nucleus. Paper III describes the recursion procedure for the formal solution
$\Psi=\sum_{l=0}^{\infty} C_{i j p} C_{i j p} P_{l}(\Omega) r_{1}^{i} r_{2}^{\prime} \exp \left(-\lambda_{1} r_{1}\right) \exp \left(-\lambda_{2} r_{2}\right) \ln ^{p} r_{1} \quad r_{1}>r_{2}$
where $P_{l}(\Omega)$ is a Legendre polynomial and the solution for $r_{1}<r_{2}$ is obtained by interchanging r_{1} and r_{2} in (2). Exact expressions for the coefficients $C_{i j l p}$ with $i+j=0,1$ and 2 were given there.

Equation (2) describes all bound states of ${ }^{1} S$ symmetry. The wavefunction for a particular state is obtained by choosing appropriate values for the arbitrary coefficients. We make use of the fact that the coefficients are polynomials in Z^{-1}. The energy can also be expanded as a power series in $Z^{-1}, E=\sum_{n=0}^{\infty} E_{n}\left(Z^{-1}\right)^{n}$. A particular state is selected by setting E_{0} and the Z^{0} components of the arbitrary coefficients at their values for the corresponding eigenfunction of the $Z^{-1}=0$ system. This fixes λ_{1} and λ_{2}. The lambda dependence of the coefficients causes the terms of higher power in Z^{-1} in the energy and the arbitrary coefficients to assume values appropriate to the state under consideration when the normalisability condition is applied.

We illustrate the method by calculating some Z^{-1} terms for the ground state. The extension to other ${ }^{1} S$ states and to higher powers of Z^{-1} is straightforward. For the ground state, $E_{0}=-1$. The Z^{0} component of the series solution (2) truncates if
$\lambda_{1}-\lambda_{2}=1$, representing a product of hydrogen 1 s eigenfunctions. Only $p=0$ and $p=1$ terms appear in the Z^{-1} component of the solution (2) whose radial functions become, for each $l \geqslant 0$,

$$
\begin{equation*}
f_{l}\left(r_{1}, r_{2}\right)=\exp \left(-r_{1}\right) \exp \left(-r_{2}\right) \sum_{p=0}^{1} \sum_{i, j} C_{i j l p^{\prime} r_{1}^{i} r_{2}^{j} \ln ^{p} r_{1} \quad r_{1}>r_{2}} \tag{3}
\end{equation*}
$$

The $p=1$ component of the solution (3) is an asymptotically increasing function. To make $f_{l}\left(r_{1}, r_{2}\right)$ asymptotically decreasing would involve adjusting the $p=0$ component, which contains the arbitrary coefficients, so that it just cancelled the divergence of the $p=1$ component. This difficult problem may be avoided by replacing the $\ln ^{p} r_{1}$ factors with alternative functions, logarithmic in behaviour near $r_{1}=0$, but decreasing for large r_{1}. The existence of these alternative forms was discussed in II. A suitable form, obtained by a simple transformation of the coefficients, is
$f_{l}\left(r_{1}, r_{2}\right)=\exp \left(-r_{1}\right) \exp \left(-r_{2}\right) \sum_{p=0}^{1} \sum_{i, j} C_{i j l p}^{\prime}\left[\exp \left(r_{1}\right) \operatorname{Ei}\left(-r_{1}\right)\right]^{p} r_{1}^{i} r_{2}^{j} \quad r_{1}>r_{2}$
where $\operatorname{Ei}\left(-r_{1}\right)$ is the exponential integral function. For convenience in notation we rewrite this expression, suppressing the l index, as
$\exp \left(-r_{1}\right) \exp \left(-r_{2}\right)\left(\sum_{i, j} C_{i j} r_{1}^{i} r_{2}^{j}+\exp \left(r_{1}\right) \operatorname{Ei}\left(-r_{1}\right) \sum_{i, j} D_{i j} r_{1}^{i} r_{2}^{j}\right) \quad r_{1}>r_{2}$.
In this form, the Z^{-1} component of the solution corresponds exactly with the first-order perturbation of the ground state, described in II.

3. Asymptotic behaviour of the radial functions

When the potential terms are neglected, equation (1) is separable with eigenfunctions of the form $f\left(r_{1}\right) f\left(r_{2}\right) P_{l}(\Omega)$. The equation is no longer separable in the radial variables when the electron-electron interaction is reintroduced, but the following argument leads us to expect that the radial functions in the solution (2) may tend towards a separable form at large r_{1} and r_{2}. Where the $1 / r_{12}$ potential is small, the radial functions should be nearly separable. As r_{1} and r_{2} approach infinity, r_{12} can only be small (and $1 / r_{12}$ large) for vanishingly small angles Θ. Thus the degree of separability should increase as r_{1} and r_{2} increase, until the radial function for each partial wave component becomes asymptotically separable.

Correlation between the motions of the electrons, which is responsible for a cusp in the wavefunction at $r_{12}=0$, persists in the asymptotic region, especially when $\Theta \approx 0$. In that region the cusp is produced by a superposition of Legendre polynomials, each multiplied by a smooth, separable, radial function, much as the singularity in $1 / r_{12}$ at $r_{12}=0$ is produced by such a superposition (see equation (24) of III).

4. Properties of asymptotically separable series

The radial functions in (5) may be asymptotically separable as a function of r_{1} multiplied by a function of r_{2}. Thus the $C_{i j}$ and $D_{i j}$ series should each be asymptotically separable
and the asymptotic form in r_{2} for the two series should be identical. The r_{2} dependence could then be extracted as a common factor.

In other words, we expect the asymptotic form of the radial function to be, for $r_{1}>r_{2}$,

$$
\exp \left(-r_{1}\right) \exp \left(-r_{2}\right)\left(\sum_{i} C_{i} r_{1}^{i} \sum_{j} C_{j}^{\prime} r_{2}^{j}+\exp \left(r_{1}\right) \operatorname{Ei}\left(-r_{1}\right) \sum_{i} D_{i} r_{1}^{i} \sum_{j} D_{j}^{\prime} r_{2}^{j}\right)
$$

where $C_{j}^{\prime}=a D_{j}^{\prime}$ and a is independent of j. Terms with large i and j should dominate the asymptotic form, so we expect that $C_{i j} \approx C_{i} C_{j}^{\prime}$ and $D_{i j} \approx D_{i} D_{j}^{\prime}$ for large i and j. Hence the ratios $C_{i, j+1} / C_{i j}$ and $D_{i, j+1} / D_{i j}$ should be nearly independent of i for large i and j. We should also observe that, approximately,

$$
\begin{equation*}
C_{i, j+1} / C_{i j}=D_{i, j+1} / D_{i j} \tag{6}
\end{equation*}
$$

with the approximation improving as j increases.
The ratios $C_{i, j+1} / C_{i j}$ and $D_{i, j+1} / D_{i j}$ have been evaluated for coefficients calculated by the method described in II, that is, with the arbitrary coefficients determined by a least-squares procedure. A sample of the ratios for $l=1$ is shown in table 1. It may be observed that, even for low values of i and j, the ratios are nearly independent of i and that equation (6) holds to a good approximation. These relationships are not observed when the arbitrary coefficients deviate from the least-squares values. For higher values of l the agreement between the ratios is better, while for $l=0$ it is slightly worse.

The radial functions are approximately separable even at small values of r_{1} and r_{2} for $l>0$. It is not clear whether the degree of separability increases with r_{1} and r_{2}, because the calculation of the coefficients involves approximations and errors (see II) which accumulate as $i+j$ increases. For $l=0$ the separable form, if it holds, is approached far more slowly. Nevertheless equation (6) is valid asymptotically for all l. This property allows the values of many of the arbitrary coefficients in the formal solution to be determined.

5. Reduction of the number of undetermined coefficients

The coefficients $C_{l+4 n, l}$ for non-negative integers n are not determined by the recurrence relation. Except for C_{00}, which is replaced by E_{1}, these must be chosen to make the norm of the solution finite. We now use equation (6) to reduce the number of undetermined coefficients to one for each l.

A coefficient $C_{i, j^{\prime}+1}$ with $i \geqslant l$ and $j^{\prime}+1 \geqslant l$ depends linearly on the arbitrary coefficients encountered earlier in the recursion process, that is, on those with $n \leqslant$ $\frac{1}{4}\left(i+j^{\prime}+1-2 l\right.$) (see III). The $D_{i j}$ coefficients are independent of the arbitrary coefficients. Setting $j=j^{\prime}$ in (6) yields an equation linear in these arbitrary coefficients. Additional linear equations involving the same arbitrary coefficients may be obtained by substituting $j=j^{\prime}-1, j^{\prime}-2$, etc into (6), keeping i and l constant. The equations may be solved simultaneously by a straightforward elimination method.

Although it is possible to obtain more equations than the number of arbitrary coefficients in the $j=j^{\prime}$ equation, the equations are not all independent. One coefficient always remains to be determined by normalisability. The equations give approximate expressions for the arbitrary coefficients in terms of $C_{l l}$ (for $l>0$) or E_{1} (for $l=0$). Including equations between ratios of higher-order coefficients, which display the
Table 1. Ratios of $I=1$ coefficients. The arbitrary coefficients in the formal solution were determined by the least-squares method of II.

	$C_{i, j+1} / C_{i j}$					$D_{1, j+1} / D_{i j}$				
$j i$	1	2	3	4	5	1	2	3	4	5
1	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000
2	0.40354	0.39395	0.39112	0.38618	0.38741	0.40000	0.40000	0.39546	0.39294	0.38874
3	0.33577	0.32907	0.32703	0.32339	0.32431	0.33333	0.33333	0.33014	0.32834	0.32529
4	0.28955	0.28513	0.28327	0.28114	0.28096	0.28814	0.28814	0.28571	0.28431	0.28213
5	0.25442	0.25140	0.24971	0.24851	0.24772	0.25360	0.25360	0.25168	0.25057	0.24894
6	0.22683	0.22466	0.22309	0.22239	0.22131	0.22646	0.22646	0.22482	0.22386	0.22254
7	0.20461	0.20298	0.20150	0.20108	0.19987	0.20459	0.20459	0.20311	0.20223	0.20109
8	0.18639	0.18514	0.18372	0.18345	0.18218	0.18663	0.18663	0.18526	0.18443	0.18338
9	0.17120	0.17022	0.16884	0.16867	0.16736	0.17165	0.17165	0.17034	0.16955	0.16855
10	0.15837	0.15759	0.15622	0.15613	0.15477	0.15897	0.15897	0.15772	0.15694	0.15597
11	0.14739	0.14677	0.14541	0.14537	0.14394	0.14811	0.14811	0.14690	0.14614	0.14518
12	0.13790	0.13741	0.13604	0.13606	0.13443	0.13871	0.13871	0.13754	0.13679	0.13583
13	0.12961	0.12923	0.12785	0.12794	0.12576	0.13050	0.13050	0.12936	0.12863	0.12766
14	0.12232	0.12203	0.12066	0.12074	0.11760	0.12326	0.12326	0.12216	0.12144	0.12047
15	0.11586	0.11564	0.11437	0.11413	0.10993	0.11683	0.11683	0.11577	0.11507	0.11409
16	0.11008	0.10994	0.10893	0.10766	0.13335	0.11107	0.11107	0.11007	0.10939	0.10840
17	0.10489	0.10484	0.10436	0.10081		0.10589	0.10589	0.10495	0.10430	
18	0.10016	0.10030	0.09543			0.10120	0.10120	0.10032		
19	0.09580	0.09630				0.09692	0.09692			
20	0.09235					0.09300				

asymptotic separability of the radial functions more strongly for $l>0$, leads to convergence of the approximate results towards the exact relationships. For reasons yet to be completely understood, the precise nature of this convergence differs in the $l>0$ and $l=0$ cases.

5.1. The $l>0$ case

For $l>0$, solution of the simultaneous equations provides the expressions

$$
\begin{equation*}
C_{l+4 n, l}=a_{l n} C_{l l}+b_{l n} \quad n \geqslant 1 . \tag{7}
\end{equation*}
$$

Our numerical solutions, based on $C_{i j}$ and $D_{i j}$ coefficients evaluated as in II, show that $a_{l n}$ is independent of j^{\prime} to high accuracy. This implies that $a_{l n}$ should be obtainable exactly from the algebraic expressions for low-order coefficients.

The $b_{l n}$ term in (7) converges to a limit as j^{\prime} increases. Figure 1 displays this convergence for b_{11}, a component of C_{51}.

Figure 1. The relative error in b_{11} compared with the $j^{\prime}=20$ value.
The value of i in (6) is not important. The results in figure 1 are for $i=l$. Calculations using different values of i give apparently identical values for $a_{l n}$. The estimates of $b_{l n}$ appear, as expected, to converge with increasing j^{\prime} to limits independent of i.

A study of the transformation taking equation (3) into equation (4) shows that

$$
C_{l j 11}^{\prime}=C_{l j l 1} \quad \text { and } \quad C_{i j l 0}^{\prime}=C_{i j l 0}-\gamma C_{i j 11}
$$

where γ is Euler's number (Abramowitz and Stegun 1965). Similar relations apply for transformations between solutions containing the alternative logarithmic functions described in II (except that γ must be replaced by a different constant). Thus, if equation (6) holds on the $i=l$ line for one form of the solution, it will also be true for the alternative forms. The same $a_{l n}$ and limiting $b_{l n}$ values will be obtained for all forms.

5.2. The $l=0$ case

Solving the simultaneous equations with $i \geqslant 2$ gives expressions for the $l=0$ arbitrary coefficients in the form

$$
\begin{equation*}
C_{4 n, 0}=a_{0 n} E_{1}+b_{0 n} \quad n \geqslant 1 . \tag{8}
\end{equation*}
$$

The $i=1$ equations cannot be used since the coefficients $C_{1 j}$ are independent of E_{1} and the arbitrary coefficients. The $i=0$ equations provide incorrect estimates of E_{1} and leave C_{40} undetermined. As $j^{\prime} \rightarrow \infty$, however, E_{1} becomes indeterminate, while a relation between E_{1} and C_{40} emerges.

Provided $j^{\prime}>i, a_{0 n}$ and $b_{0 n}$ appear to be independent of j^{\prime}. For $j^{\prime}<i$ the estimates of $a_{0 n}$ and $b_{0 n}$ are poor. Improved estimates of $b_{0 n}$ are obtained by increasing i in (6). The value of $a_{0 n}$ appears to be independent of i, and should be obtainable exactly from the $i=2$ equations.

Figure 2 shows the estimated value of C_{40} as a function of i^{\prime}, the value of i used in (6). These results were obtained with E_{1} set at its exact value of $0.625 Z$-scaled atomic units. The estimates oscillate about the least-squares value of II, converging as i^{\prime} increases.

Figure 2. The coefficient C_{40} as a function of i^{\prime} for $E_{1}=0.625 \mathrm{Z}$-scaled atomic units. The least-squares value (-) from II is shown for comparison.

6. The asymptotic series in $\boldsymbol{r}_{\mathbf{2}}$

When the arbitrary coefficients are chosen in accordance with equations (7) and (8), the asymptotic form of the solution in r_{2} is determined. The true asymptotic nature of the solution has not been proven, but we consider its probable form.

From our argument of $\S 3$, we expect the formal solutions of the Schrödinger equation to approach separable solutions of the independent electron problem (in which the $1 / r_{12}$ term is neglected) asymptotically. Such solutions exist for $l>0$ and have the form
$f_{l}^{\text {sep }}=\exp \left(-r_{1}\right) \exp \left(-r_{2}\right) \sum_{m=0}^{\infty} \frac{2^{m}(l+m-1)!}{m!(2 l+m+1)!} r_{1}^{m+1} \sum_{n=0}^{\infty} \frac{2^{n}(l+n-1)!}{n!(2 l+n+1)!} r_{2}^{n+l}$.
Solutions of the full equation should have the same asymptotic form in r_{2} as $f_{1}^{\text {sep }}$. In support of this proposition we note that the recurrence relation for the $D_{i j}$, considered in isolation, generates a separable series with the same r_{2} behaviour as $f_{l}^{\text {sep }}$ (the r_{1} behaviour is the same as $f_{i}^{\text {sep }}$ for the solution in (3), but different for the alternative forms of the solution). Numerical calculations show that the true $D_{i j}$ series is very close to the separable form, and appears to be the same asymptotically. Equation (6) implies that the $C_{i j}$ series should also have this asymptotic form.

For $l=0$, the independent electron problem has no infinite-norm separable solutions with the physically correct behaviour at the origin. Only asymptotically separable solutions exist and the exact asymptotic form of the solution is not known.

7. Solution of the normalisability problem

The asymptotic form in r_{2}, proposed in (9), is a rapidly increasing function of r_{2}. This fact does not jeopardise the normalisability of the solutions, since the solutions apply to the $r_{2}<r_{1}$ region. The asymptotic form in r_{1} must, however, be a rapidly decreasing function if the norm of the wavefunction is to be finite.

We expect a finite-norm solution to be represented by an alternating series in r_{1}. The r_{1} behaviour of the solution is controlled by the remaining undetermined parameters, $C_{l l}$ (for $l>0$) and E_{1} (for $l=0$). Examining a series having $C_{l l}$ or E_{1} near its correct value, we observe that initially the series alternates. With increasing i the series changes to a non-alternating form as infinite-norm solutions of the independent electron problem begin to dominate its behaviour. Improving the estimate of $C_{l l}$ or E_{1} extends the region of alternating behaviour-to infinity for exact estimates.

These properties of the series solution may be exploited to find estimates of $C_{l l}$ and E_{1}. One method involves equating a coefficient $C_{i l}$ to zero for some $i=i^{*}$. This gives an approximate linear equation that can be solved for $C_{l l}$ or E_{1}. The resulting series alternates for $i<i^{*}$ and is non-alternating for $i>i^{*}$. Increasing i^{*} improves the estimate of the undetermined parameter.

An alternative method giving more rapid convergence involves the minimisation of the product $C_{i, l} C_{i+1, l}$ as a function of $C_{l l}$ or E_{1}. Figures 3 and 4 show the convergence of estimates of C_{11} and E_{1} with increasing i^{*}, the value of i for which the product is minimised. The converged estimates in this relatively crude.calculation are reasonably close to the least-squares value of C_{11} (from II) and the exact value of E_{1}. The discrepancies arise because the condition derived from the asymptotic behaviour has been applied in an approximate way (using only low-order coefficients) in this exploratory study.

The results obtained here are for the ground state of a helium-like atom. Excited states of ${ }^{1}$ S symmetry may be treated in the same way by selecting other sets of λ_{1},

Figure 3. The value of C_{11} that minimises $C_{i \cdot,} C_{i}{ }^{*}+1$, , shown as a function of i^{*}. The least-squares value (-) from II is shown for comparison.

Figure 4. The value of E_{1} that minimises $C_{1^{*}, n} C_{1^{*}+1,0}$, shown as a function of i^{*}. The exact value (-) is $0.625 Z$-scaled atomic units.
λ_{2} and E_{0} values for which the Z^{0} component of the series solution truncates. For each quantum state there is a unique choice of values for E_{1} and the arbitrary coefficients that produces a finite-norm solution.

8. Conclusions

The radial functions for ${ }^{1} \mathrm{~S}$ states of a helium-like atom, expressed in spherical polar coordinates, contain components that are asymptotically separable. The multiplier for a logarithmic contribution has the same asymptotic form as the polynomial component of the solution. Such asymptotic properties reduce the problem of finding finite-norm series solutions of the Schrödinger equation from one involving infinitely many parameters to a set of one-parameter problems.

A computational procedure for exploiting the asymptotic properties requires only simple algebraic steps, making a very efficient method for calculating the wavefunction possible. With careful programming, numerical results of far greater accuracy than those reported in this preliminary study could be obtained. Furthermore, the insight into the nature of the physical solutions provided by this property will be helpful in deriving the exact solutions.

We expect the properties and methods described here to be applicable to other states of the two-electron Coulomb problem, to systems with a greater number of particles, and to systems with other than Coulomb forces.

Acknowledgment

This work was supported by the Australian Research Grants Scheme.

References

Demiralp M and Suhubi E 1977 J. Math. Phys. 18 777-85
Knirk D L 1974a J. Chem. Phys. 60 66-80
1974b J. Chem. Phys. 60 760-5
1974c Proc. Natl Acad. Sci. USA 71 1291-3
1974d Phys. Rev. Lett. 32 651-4
McColm D 1973 Phys. Rev. A 7 1272-6
Rosenthal C M and Wilson E B 1967 Phys. Rev. Lett. 19 143-5
-1970 J. Chem. Phys. 53 388-91

