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Abstract. Formal series solutions for the Schrodinger equations of few-particle systems 
contain infinitely many parameters associated with the normalisability, i.e. square-integra- 
bility of the wavefunction. The energy is one of these parameters. A method for determin- 
ing the parameters by examining the asymptotic behaviour of the series has been developed. 
No integration, matrix inversions or trial and error procedures are involved. 

As described here the method is directly applicable to the 'S states of two-electron 
atoms. If the wavefunction is expressed as a multipole expansion in spherical polar 
coordinates, the radial functions have asymptotic properties which give rise to relations 
between the parameters. Values assigned to the parameters not specified by these relations 
(one per multipole) ensure that the wavefunction is normalisable. 

1. Introduction 

Formal solutions for the Schrodinger equations of small atomic systems have been 
obtained in the form of infinite series expansions involving numerical coefficients (Knirk 
1974a, b, c, d, Davis and Maslen 1982). Recurrence relations derived from the 
Schrodinger equation allow most of the coefficients to be determined recursively, 
subject to starting conditions which ensure correct behaviour of the solutions at the 
nucleus. Infinitely many coefficients are not determined by the recursion process, and 
may have arbitrary values in the formal solutions. These coefficients and the energy 
E must be chosen so that, at large distances from the nucleus, the solutions decrease 
sufficiently rapidly to have finite norms. Normalisable solutions exist only for special 
values of E, which are the eigenvalues. 

As yet none of the methods proposed for determining the parameters associated 
with normalisability has realised the potential for computational efficiency and exact 
treatment offered by the formal solutions. Methods suggested by Knirk ( 1 9 7 4 ~ )  and 
by Demiralp and Suhubi (1977) require the solution of determinantal equations with 
roots which are approximations to some of the energy eigenvalues. One would hope 
that the limitations of this procedure, which is a time-consuming part of the usual 
orbital-based wavefunction calculations, could be avoided in the use of formal solutions. 
A method described by Davis and Maslen (1982, hereafter referred to as 11) involves 
least-squares analyses of the coefficients. This is also cumbersome, requiring matrix 
inversions. 

The determination of the parameters associated with normalisability ideally requires 
a knowledge of the asymptotic form of each solution at large distances. Extraction of 
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this asymptotic form from the series would enable the energy and the arbitrary 
coefficients to be evaluated, by requiring the remaining series to truncate. 

The methods mentioned above are not suited to the exact determination of the 
asymptotic forms of the series. A more suitable method, described below, results from 
a study of the problem in spherical polar coordinates. The study reveals that some of 
the components of the radial wavefunctions are asymptotically separable. An analysis 
of asymptotic behaviour, when combined with an algebraic treatment of the type 
described in the preceding paper (Davis and Maslen 1983, hereafter referred to as 
III), enhances the prospects for obtaining exact solutions of the Schrodinger equation. 

In addition to its application to exact solutions, the asymptotic separability property 
leads to an efficient numerical method for estimating the energy and the arbitrary 
coefficients. The procedure does not require matrix inversions, solution of determinan- 
tal equations or the calculation of integrals. Trial and error estimates of the energy, 
of the type applied to approximate series solutions by Rosenthal and Wilson (1967, 
1970) and McColm (1973), are not required. Although the calculations reported here 
are not of high accuracy, their purpose being merely to indicate the properties of the 
series solutions and to guide future analytical and computational work, high accuracy 
should be readily obtainable. 

2. Formal solutions in spherical polar coordinates 

Our procedure is illustrated here by application to the 'S states of helium-like atoms 
for which the Schrodinger equation, in coordinates defined in 111, becomes 

rz2-r;-+r;2-(1-R2)-) a a  a a ----+--Ely 1 1  1 =o. 
[-i r=l  i ( ar, ar, aR aR rl r2 Zr12 

Z is the nuclear charge in units of the proton charge, and R is the cosine of the angle 
0 between the position vectors of the electrons relative to the nucleus. Paper I11 
describes the recursion procedure for the formal solution 

where P,(R) is a Legendre polynomial and the solution for r l < r 2  is obtained by 
interchanging rl and r2 in (2).  Exact expressions for the coefficients C,, with i+j = 0, 1 
and 2 were given there. 

Equation (2) describes-all bound states of ' S  symmetry. The wavefunction for a 
particular state is obtained by choosing appropriate values for the arbitrary coefficients. 
We make use of the fact that the coefficients are polynomials in Z-'. The energy can 
also be expanded as a power series in Z-' ,  E =X:=,,E,(Z-')". A particular state is 
selected by setting Eo and the components of the arbitrary coefficients at their 
values for the corresponding eigenfunction of the Z-' = 0 system. This fixes A I  and 
A*. The lambda dependence of the coefficients causes the terms of higher power in 
Z-' in the energy and the arbitrary coefficients to assume values appropriate to the 
state under consideration when the normalisability condition is applied. 

We illustrate the method by calculating some Z-' terms for the ground state. The 
extension to other 'S states and to higher powers of Z-' is straightforward. For the 
ground state, En= -1. The Zo component of the series solution (2) truncates if 



Analytical solutions for the Schrodinger equation: IV 4257 

A l  - ,Iz = 1, representing a product of hydrogen 1s eigenfunctions. Only p = 0 and 
p = 1 terms appear in the 2-' component of the solution (2) whose radial functions 
become, for each l ~ 0 ,  

The p = 1 component of the solution (3) is an asymptotically increasing function. 
To make fi(  r l ,  r2) asymptotically decreasing would involve adjusting the p = 0 com- 
ponent, which contains the arbitrary coefficients, so that it just cancelled the divergence 
of the p = 1 component. This difficult problem may be avoided by replacing the InP rl 
factors with alternative functions, logarithmic in behaviour near r1 = 0, but decreasing 
for large rl.  The existence of these alternative forms was discussed in 11. A suitable 
form, obtained by a simple transformation of the coefficients, is 

1 

fi(r1, r ~ )  = exp(-rl) exp(-rz) C:]lp [exp(rl) Ei(-rl)lPr;ri rl' r2 (4) 
p = o  1 9 1  

where Ei(-rl) is the exponential integral function. For convenience in notation we 
rewrite this expression, suppressing the 1 index, as 

In this form, the 2-' component of the solution corresponds exactly with the first-order 
perturbation of the ground state, described in 11. 

3. Asymptotic behaviour of the radial functions 

When the potential terms are neglected, equation ( 1 )  is separable with eigenfunctions 
of the form f ( r l ) f ( r z ) P l ( n ) .  The equation is no longer separable in the radial variables 
when the electron-electron interaction is reintroduced, but the following argument 
leads us to expect that the radial functions in the solution (2) may tend towards a 
separable form at large rl and r2.  Where the l / r 1 2  potential is small, the radial functions 
should be nearly separable. As rl and r2 approach infinity, r12 can only be small (and 
l / r 1 2  large) for vanishingly small angles 0. Thus the degree of separability should 
increase as rl and rz increase, until the radial function for each partial wave component 
becomes asymptotically separable. 

Correlation between the motions of the electrons, which is responsible for a cusp 
in the wavefunction at r12 = 0, persists in the asymptotic region, especially when 0 = 0. 
In that region the cusp is produced by a superposition of Legendre polynomials, each 
multiplied by a smooth, separable, radial function, much as the singularity in l / r , ,  at 
r12 = 0 is produced by such a superposition (see equation (24) of 111). 

4. Properties of asymptotically separable series 

The radial functions in ( 5 )  may be asymptotically separable as a function of rl multiplied 
by a function of rz. Thus the Cij and Dij series should each be asymptotically separable 
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and the asymptotic form in r2 for the two series should be identical. The r2 dependence 
could then be extracted as a common factor. 

In other words, we expect the asymptotic form of the radial function to be, for rl > r2,  

I  I  
exp(-rl) exp(-r,) ( Cirf C:ri +exp(r,) Ei(-rl) Dirf c Djr: 

i i 

where C; = uD: and u is independent of j .  Terms with large i and j should dominate 
the asymptotic form, so we expect that C,, = CICi and D,, = DID; for large i and j. 
Hence the ratios CI,,+l /CI,  and DI,,+l/D,l should be nearly independent of i for large 
i and j. We should also observe that, approximately, 

with the approximation improving as j increases. 
The ratios C1,,+,/ C,, and Di,,+l/ D ,  have been evaluated for coefficients calculated 

by the method described in 11, that is, with the arbitrary coefficients determined by a 
least-squares procedure. A sample of the ratios for 1 = 1 is shown in table 1. It may 
be observed that, even for low values of i and j ,  the ratios are nearly independent of 
i and that equation (6) holds to a good approximation. These relationships are not 
observed when the arbitrary coefficients deviate from the least-squares values. For 
higher values of 1 the agreement between the ratios is better, while for 1 = 0 it is slightly 
worse. 

The radial functions are approximately separable even at small values of rl and r2 
for 1 > 0. It is not clear whether the degree of separability increases with rl and r2,  
because the calculation of the coefficients involves approximations and errors (see 11) 
which accumulate as i + j  increases. For I = O  the separable form, if it holds, is 
approached far more slowly. Nevertheless equation (6) is valid asymptotically for all 
1. This property allows the values of many of the arbitrary coefficients in the formal 
solution to be determined. 

5. Reduction of the number of undetermined coefficients 

The coefficients C1+4n,l for non-negative integers n are not determined by the recur- 
rence relation. Except for Coo, which is replaced by El, these must be chosen to make 
the norm of the solution finite. We now use equation (6) to reduce the number of 
undetermined coefficients to one for each I. 

A coefficient C,,,,,., with i 2 1 and j ' +  12 1 depends linearly on the arbitrary 
coefficients encountered earlier in the recursion process, that is, on those with ns 
$( i + j '  + 1 - 21) (see 111). The Dii coefficients are independent of the arbitrary 
coefficients. Setting j = j '  in (6) yields an equation linear in these arbitrary coefficients. 
Additional linear equations involving the same arbitrary coefficients may be obtained 
by substituting j = j ' -  1, j ' - 2 ,  etc into (6) ,  keeping i and 1 constant. The equations 
may be solved simultaneously by a straightforward elimination method. 

Although it is possible to obtain more equations than the number of arbitrary 
coefficients in the j =I' equation, the equations are not all independent. One coefficient 
always remains to be determined by normalisability. The equations give approximate 
expressions for the arbitrary coefficients in terms of C,, (for 1 > 0) or El (for 1 = O ) .  
Including equations between ratios of higher-order coefficients, which display the 
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asymptotic separability of the radial functions more strongly for 1 > 0, leads to conver- 
gence of the approximate results towards the exact relationships. For reasons yet to 
be completely understood, the precise nature of this convergence differs in the 1 > 0 
and 1 = 0 cases. 

5.1. The l > O  case 

For 1 > 0, solution of the simultaneous equations provides the expressions 

C 1 + 4 n , l  = a/nClI + b / n  n z l .  (7) 
Our numerical solutions, based on Cij and D, coefficients evaluated as in 11, show that 
al, is independent of j '  to high accuracy. This implies that a/, should be obtainable 
exactly from the algebraic expressions for low-order coefficients. 

The bl, term in (7) converges to a limit as j '  increases. Figure 1 displays this 
convergence for b, , ,  a component of C5*. 

x 

x x  

x 
x 

2 6 10 14 18 
J 

Figure 1. The relative error in b, compared with the j '  = 20 value, 

The value of i in ( 6 )  is not important. The results in figure 1 are for i = 1. Calculations 
using different values of i give apparently identical values for a/,. The estimates of bf, 
appear, as expected, to converge with increasing j '  to limits independent of i. 

A study of the transformation taking equation (3) into equation (4) shows that 

Cijf1 =C/j/ l  and C ijfo = C ljro - YC l j /  1 

where y is Euler's number (Abramowitz and Stegun 1965). Similar relations apply 
for transformations between solutions containing the alternative logarithmic functions 
described in I1 (except that y must be replaced by a different constant). Thus, if 
equation ( 6 )  holds on the i = 1 line for one form of the solution, it will also be true 
for the alternative forms. The same a/, and limiting bf, values will be obtained for all 
forms. 

5.2. The 1 = 0 case 

Solving the simultaneous equations with i 2 2 gives expressions for the 1 = 0 arbitrary 
coefficients in the form 
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The i = 1 equations cannot be used since the coefficients C,, are independent of El 
and the arbitrary coefficients. The i = O  equations provide incorrect estimates of El 
and leave C4, undetermined. As j '  + CO, however, El becomes indeterminate, while a 
relation between E ,  and c40 emerges. 

Provided j '  > i, a,, and bo, appear to be independent of j ' .  For J' < i the estimates 
of aon and bo, are poor. Improved estimates of bo, are obtained by increasing i in 
( 6 ) .  The value of aon appears to be independent of i, and should be obtainable exactly 
from the i = 2 equations. 

Figure 2 shows the estimated value of C40 as a function of i ' ,  the value of i used 
in ( 6 ) .  These results were obtained with E ,  set at its exact value of 0.625 Z-scaled 
atomic units. The estimates oscillate about the least-squares value of 11, converging 
as i' increases. 

0 1 
Figure 2. The coefficient c,, as a function of i' for E ,  = 0.625 Z-scaled atomic units. The 
least-squares value (-) from I 1  is shown for comparison. 

6. The asymptotic series in r2 

When the arbitrary coefficients are chosen in accordance with equations (7 )  and (8),  
the asymptotic form of the solution in r2 is determined. The true asymptotic nature 
of the solution has not been proven, but we consider its probable form. 

From our argument of 0 3, we expect the formal solutions of the Schrodinger 
equation to approach separable solutions of the independent electron problem (in 
which the l / r 1 2  term is neglected) asymptotically. Such solutions exist for 1 > 0 and 
have the form 

2 " ( l + m - l ) !  rln+l f 2 " ( l + n - 1 ) !  
,=O n!(21+ n +  l)! f Y e p  = exp( - r l )  exp( -r2) 1 r;+l 

m=o m!(21+ m + l)! (9) 

Solutions of the full equation should have the same asymptotic form in r2 as fyp.  In 
support of this proposition we note that the recurrence relation for the D,, considered 
in isolation, generates a separable series with the same rz behaviour as f T p  (the r ,  
behaviour is the same as f T P  for the solution in (3) ,  but different for the alternative 
forms of the solution). Numerical calculations show that the true D,, series is very 
close to the separable form, and appears to be the same asymptotically. Equation ( 6 )  
implies that the C,, series should also have this asymptotic form. 



4262 C L Davis and E N Maslen 

For 1 = 0, the independent electron problem has no infinite-norm separable solutions 
with the physically correct behaviour at the origin. Only asymptotically separable 
solutions exist and the exact asymptotic form of the solution is not known. 

7. Solution of the normalisability problem 

The asymptotic form in r2 ,  proposed in ( 9 ) ,  is a rapidly increasing function of r2. This 
fact does not jeopardise the normalisability of the solutions, since the solutions apply 
to the r2 < rl region. The asymptotic form in rl must, however, be a rapidly decreasing 
function if the norm of the wavefunction is to be finite. 

We expect a finite-norm solution to be represented by an alternating series in r , .  
The r1 behaviour of the solution is controlled by the remaining undetermined para- 
meters, C,, (for 1 > 0 )  and El (for 1 =O). Examining a series having Cll or El near its 
correct value, we observe that initially the series alternates. With increasing i the 
series changes to a non-alternating form as infinite-norm solutions of the independent 
electron problem begin to dominate its behaviour. Improving the estimate of Cl, or 
E l  extends the region of alternating behaviour-to infinity for exact estimates. 

These properties of the series solution may be exploited to find estimates of C,, 
and E l .  One method involves equating a coefficient C,, to zero for some i = i * .  This 
gives an approximate linear equation that can be solved for C,, or El. The resulting 
series alternates for i < i* and is non-alternating for i > i*. Increasing i* improves the 
estimate of the undetermined parameter. 

An alternative method giving more rapid convergence involves the minimisation 
of the product C2,fCt+l,f as a function of C,, or El. Figures 3 and 4 show the convergence 
of estimates of CI1 and El with increasing i*, the value of i for which the product is 
minimised. The converged estimates in this relatively crudescalculation are reasonably 
close to the least-squares value of CI1 (from 11) and the exact value of E,. The 
discrepancies arise because the condition derived from the asymptotic behaviour has 
been applied in an approximate way (using only low-order coefficients) in this explora- 
tory study. 

The results obtained here are for the ground state of a helium-like atom. Excited 
states of ' S  symmetry may be treated in the same way by selecting other sets of A,, 

I' 

Figure 3. The value of C,, that minimises Ct*,,C,*+l,,, shown as a function of i*. The 
least-squares value (-) from I1 is shown for comparison. 
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0 6 6  

X X X X  

E. 

0 6 2  

Figure 4. The value of E ,  that minimises C,.,r)C,.+, 0. shown as a function of i*. The exact 
value (-\ is 0.625 Z-scaled atomic units 

h2 and Eo values for which the Z' component of the series solution truncates. For 
each quantum state there is a unique choice of values for El and the arbitrary coefficients 
that produces a finite-norm solution. 

8. Conclusions 

The radial functions for ' S  states of a helium-like atom, expressed in spherical polar 
coordinates, contain components that are asymptotically separable. The multiplier for 
a logarithmic contribution has the same asymptotic form as the polynomial component 
of the solution. Such asymptotic properties reduce the problem of finding finite-norm 
series solutions of the Schrodinger equation from one involving infinitely many para- 
meters to a set of one-parameter problems. 

A computational procedure for exploiting the asymptotic properties requires only 
simple algebraic steps, making a very efficient method for calculating the wavefunction 
possible. With careful programming, numerical results of far greater accuracy than 
those reported in this preliminary study could be obtained. Furthermore, the insight 
into the nature of the physical solutions provided by this property will be helpful in 
deriving the exact solutions. 

We expect the properties and methods described here to be applicable to other 
states of the two-electron Coulomb problem, to systems with a greater number of 
particles, and to systems with other than Coulomb forces. 

Acknowledgment 

This work was supported by the Australian Research Grants Scheme. 

References 

Abrarnowitz M and Stegun I A (ed) 1965 Handbook of Mathematical Functions (New York: Dover) 
Davis C L and Maslen E N 1982 Proc. R. Soc. A 384 89-105 
~ 1983 J.  Phys .  A: .Math. Gen. 16 4237-53 



4264 C L Davis and E N Maslen 

Demiralp M and Suhubi E 1977 J. Marh. Phys. 18 777-85 
Knirk D L 1974a J. Chem. Phys. 60 66-80 
- 1974b J. Chem. Phys. 60 760-5 
- 1974c Proc. Narl Acnd. Sci. USA 71 1291-3 
- 1974d Phys. Ret.. Len. 32 651-4 
McColm D 1973 Phys. Rev. A 7 1272-6 
Rosenthal C M and Wilson E B 1967 Phys. Ret.. Lett. 19 143-5 
-1970 J. Chem. Phys. 53 388-91 


